Micro-Objective Learning : Accelerating Deep Reinforcement Learning through the Discovery of Continuous Subgoals

نویسندگان

  • Sungtae Lee
  • Sang-Woo Lee
  • Jinyoung Choi
  • Dong-Hyun Kwak
  • Byoung-Tak Zhang
چکیده

Recently, reinforcement learning has been successfully applied to the logical game of Go, various Atari games, and even a 3D game, Labyrinth, though it continues to have problems in sparse reward settings. It is difficult to explore, but also difficult to exploit, a small number of successes when learning policy. To solve this issue, the subgoal and option framework have been proposed. However, discovering subgoals online is too expensive to be used to learn options in large state spaces. We propose Micro-objective learning (MOL) to solve this problem. The main idea is to estimate how important a state is while training and to give an additional reward proportional to its importance. We evaluated our algorithm in two Atari games: Montezuma’s Revenge and Seaquest. With three experiments to each game, MOL significantly improved the baseline scores. Especially in Montezuma’s Revenge, MOL achieved two times better results than the previous state-of-the-art model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Reinforcement Learning through the Discovery of Useful Subgoals

An ability to adjust to changing environments and unforeseen circumstances is likely to be an important component of a successful autonomous space robot. This paper shows how to augment reinforcement learning algorithms with a method for automatically discovering certain types of subgoals online. By creating useful new subgoals while learning, the agent is able to accelerate learning on a curre...

متن کامل

Automatic Discovery of Subgoals in Reinforcement Learning using Diverse Density

This paper presents a method by which a reinforcement learning agent can automatically discover certain types of subgoals online. By creating useful new subgoals while learning, the agent is able to accelerate learning on the current task and to transfer its expertise to other, related tasks through the reuse of its ability to attain subgoals. The agent discovers subgoals based on commonalities...

متن کامل

Accelerating flat reinforcement learning on a robot by using subgoals in a hierarchical framework

Learning a motor skill task with Reinforcement Learning still takes a long time. A way to speed up the learning process without using much prior knowledge is to use subgoals. In this study, the use of subgoals decreased the learning time by a factor nine and we show that tests on a real robot give similar results. The price to be paid, in case the subgoals do not lie on the optimal path, is a w...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Accelerating Action Dependent Hierarchical Reinforcement Learning Through Autonomous Subgoal Discovery

This paper presents a new method for the autonomous construction of hierarchical action and state representations in reinforcement learning, aimed at accelerating learning and extending the scope of such systems. In this approach, the agent uses information acquired while learning one task to discover subgoals for similar tasks by analyzing the learned policy using Monte Carlo sampling. The age...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1703.03933  شماره 

صفحات  -

تاریخ انتشار 2017